Wave propagation in media having negative permittivity and permeability.
نویسندگان
چکیده
Wave propagation in a double negative (DNG) medium, i.e., a medium having negative permittivity and negative permeability, is studied both analytically and numerically. The choices of the square root that leads to the index of refraction and the wave impedance in a DNG medium are determined by imposing analyticity in the complex frequency domain, and the corresponding wave properties associated with each choice are presented. These monochromatic concepts are then tested critically via a one-dimensional finite difference time domain (FDTD) simulation of the propagation of a causal, pulsed plane wave in a matched, lossy Drude model DNG medium. The causal responses of different spectral regimes of the medium with positive or negative refractive indices are studied by varying the carrier frequency of narrowband pulse excitations. The smooth transition of the phenomena associated with a DNG medium from its early-time nondispersive behavior to its late-time monochromatic response is explored with wideband pulse excitations. These FDTD results show conclusively that the square root choice leading to a negative index of refraction and positive wave impedance is the correct one, and that this choice is consistent with the overall causality of the response. An analytical, exact frequency domain solution to the scattering of a wave from a DNG slab is also given and is used to characterize several physical effects. This solution is independent of the choice of the square roots for the index of refraction and the wave impedance, and thus avoids any controversy that may arise in connection with the signs of these constituents. The DNG slab solution is used to critically examine the perfect lens concept suggested recently by Pendry. It is shown that the perfect lens effect exists only under the special case of a DNG medium with epsilon(omega)=mu(omega)=-1 that is both lossless and nondispersive. Otherwise, the closed form solutions for the field structure reveal that the DNG slab converts an incident spherical wave into a localized beam field whose parameters depend on the values of epsilon and mu. This beam field is characterized with a paraxial approximation of the exact DNG slab solution. These monochromatic concepts are again explored numerically via a causal two-dimensional FDTD simulation of the scattering of a pulsed cylindrical wave by a matched, lossy Drude model DNG slab. These FDTD results demonstrate conclusively that the monochromatic electromagnetic power flow through the DNG slab is channeled into beams rather then being focused and, hence, the Pendry perfect lens effect is not realizable with any realistic metamaterial.
منابع مشابه
Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors.
We study the behavior of wave propagation in materials for which not all of the principal elements of the permeability and permittivity tensors have the same sign. We find that a wide variety of effects can be realized in such media, including negative refraction, near-field focusing, and high impedance surface reflection. In particular, a bilayer of these materials can transfer a field distrib...
متن کاملThe Future of Satellite Communication Antennas: Negative Refractive Index Metamaterials – A Review
Nowadays, electromagnetic metamaterials is a rapidly growing research domain involving electromagnetism, microwave and millimetre wave technology, optics, material technology and nanotechnology. In particular, paper concerns about the utilization of split ring resonators in negative permeability meta materials, the concept and the production of an isotropic negative permeability medium, an isot...
متن کاملWhat are the left-handed media and what is interesting about them?
We review the intensively discussed ideas about wave propagation and refraction in media where both electric permittivity and magnetic permeability are negative. The criticism against negative refraction as violating the causality principle is considered. Starting from the initial wave equations, refraction of beams at the boundary of a lefthanded medium is analyzed. The physics of a perfect le...
متن کامل3 1 A ug 2 00 4 What are the left - handed media and what is interesting about them ? ∗
We review the intensively discussed ideas about wave propagation and refraction in media where both electric permittivity and magnetic permeability are negative. The criticism against negative refraction as violating the causality principle is considered. Starting from the initial wave equations, refraction of beams at the boundary of a left-handed medium is analyzed. The physics of a perfect l...
متن کامل2 00 4 What are the left - handed media and what is interesting about them ? ∗
We review the intensively discussed ideas about wave propagation and refraction in media where both electric permittivity and magnetic permeability are negative. The criticism against negative refraction as violating the causality principle is considered. Starting from the initial wave equations, refraction of beams at the boundary of a left-handed medium is analyzed. The physics of a perfect l...
متن کاملar X iv : p hy si cs / 0 40 81 03 v 1 2 3 A ug 2 00 4 A right - handed isotropic medium with a negative refractive index
The sign of the refractive index of any medium is soley determined by the requirement that the propagation of an electromagnetic wave obeys Einstein causality. Our analysis shows that this requirement predicts that the real part of the refractive index may be negative in an isotropic medium even if the electric permittivity and the magnetic permeability are both positive. Such a system may be a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 64 5 Pt 2 شماره
صفحات -
تاریخ انتشار 2001